Self-healing efficiency of Ultra High-Performance Fiber-Reinforced Concrete through permeability to chlorides

نویسندگان

چکیده

• Water penetration in concrete with different cracks is evaluated by chloride penetration. The evaluation of self-healing through presents reliable results. UHPFRC shows better than conventional and high-performance concretes. This study a novel methodology to evaluate the capability Ultra High-Performance Fiber-Reinforced Concrete (UHPFRC) designed compare types. procedure used combines loading reinforced elements until fixed strain level have comparable total crack opening. Afterwards, water chlorides as an indicator permeability. work compares autogenous healing efficiency concrete, two types UHPFRCs without 0.8% crystalline admixture (CA) binder weight. results show that all specimens exhibited excellent healing, higher concretes for equivalent crack. depended greatly on size fiber content. Additionally, CA obtained lowest permeability after promoting one month immersion presented almost complete against

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrical and Self-Sensing Properties of Ultra-High-Performance Fiber-Reinforced Concrete with Carbon Nanotubes

This study examined the electrical and self-sensing capacities of ultra-high-performance fiber-reinforced concrete (UHPFRC) with and without carbon nanotubes (CNTs). For this, the effects of steel fiber content, orientation, and pore water content on the electrical and piezoresistive properties of UHPFRC without CNTs were first evaluated. Then, the effect of CNT content on the self-sensing capa...

متن کامل

Feasibility of Reducing the Fiber Content in Ultra-High-Performance Fiber-Reinforced Concrete under Flexure

In this study, the flexural behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) is examined as a function of fiber length and volume fraction. Straight steel fiber with three different lengths (lf) of 13, 19.5, and 30 mm and four different volume fractions (vf) of 0.5%, 1.0%, 1.5%, and 2.0% are considered. Test results show that post-cracking flexural properties of UHPFRC, suc...

متن کامل

Ultra High Performance Self Compacting Concrete

Experiences in the development of Ultra High Performance Concrete found a very high flowability in concrete with low water powder ratio. Because of the high viscosity of the cement paste, compaction was necessary. To improve the compaction characteristics of the concrete the idea of adding coarse aggregate was developed. The first tests showed a good workability of the fresh concrete and a good...

متن کامل

Damage Simulation of High Performance Fiber Reinforced Concrete

The simulation of damage and failure in short fiber reinforced composites like high performance hybrid-fiber reinforced cement composites is still a challenging task, due to the richness of failure mechanisms introduced by fibers on the mesoscale of the material. Randomly oriented, hooked steel fibers, like the Baekaert Dramix® fibers, sustainable modify the macroscopic failure behavior of the ...

متن کامل

Strengthening of Fiber-reinforced Self-healing Ceramics

ID No: FC-169 ABSTRACT The continuous fiber reinforced self-healing ceramic composites (shFRC) were proposed as one of the candidate materials for turbine blade [1]. The shFRC consists of three components, which are oxide fiber bundle, oxide matrix and self-healing agent interlayer. As the self-healing is generated at only the interlayer, it is necessary that crack propagation is led into the i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Construction and Building Materials

سال: 2021

ISSN: ['1879-0526', '0950-0618']

DOI: https://doi.org/10.1016/j.conbuildmat.2021.125168